Evidence of Gene-Gene Interaction and Age-at-Diagnosis Effects in Type 1 Diabetes
نویسندگان
چکیده
The common genetic loci that independently influence the risk of type 1 diabetes have largely been determined. Their interactions with age-at-diagnosis of type 1 diabetes, sex, or the major susceptibility locus, HLA class II, remain mostly unexplored. A large collection of more than 14,866 type 1 diabetes samples (6,750 British diabetic individuals and 8,116 affected family samples of European descent) were genotyped at 38 confirmed type 1 diabetes-associated non-HLA regions and used to test for interaction of association with age-at-diagnosis, sex, and HLA class II genotypes using regression models. The alleles that confer susceptibility to type 1 diabetes at interleukin-2 (IL-2), IL2/4q27 (rs2069763) and renalase, FAD-dependent amine oxidase (RNLS)/10q23.31 (rs10509540), were associated with a lower age-at-diagnosis (P = 4.6 × 10⁻⁶ and 2.5 × 10⁻⁵, respectively). For both loci, individuals carrying the susceptible homozygous genotype were, on average, 7.2 months younger at diagnosis than those carrying the protective homozygous genotypes. In addition to protein tyrosine phosphatase nonreceptor type 22 (PTPN22), evidence of statistical interaction between HLA class II genotypes and rs3087243 at cytotoxic T-lymphocyte antigen 4 (CTLA4)/2q33.2 was obtained (P = 7.90 × 10⁻⁵). No evidence of differential risk by sex was obtained at any loci (P ≥ 0.01). Statistical interaction effects can be detected in type 1 diabetes although they provide a relatively small contribution to our understanding of the familial clustering of the disease.
منابع مشابه
Comparison of Serum Level and IL-18 Gene Expression and Reactive Protein in Patients with Type 2 Diabetes with Metabolic Syndrome and Healthy People
Introduction: Metabolic syndrome is a common clinical anomaly, with an increased risk of developing type 2 diabetes and cardiovascular risk factors. Increased inflammatory mediators, such as reactive protein,as well as the inflammatory cytokines can be associated with the incidence and progression of metaboli syndrome and type 2 diabetes. Materials & Methods: This study was performed on 35 m...
متن کاملEffects of Eight Weeks of Resistance Training on Muscle Myostatin Gene Expression and Insulin Resistance in Male Wistar Rats with Type 2 Diabetes
Background and Objectives: Muscular atrophy is one of the indicators of uncontrolled diabetes. The aim of the current study was to investigate effects of eight weeks of resistance training (RT) on myostatin gene expression in soleus muscles and insulin resistance in streptozotocin (STZ)-induced diabetic rats. Materials and Methods: In general, 14 Wistar male rats weighing 200–250 g and aging 8...
متن کاملEffects of Aerobic Training on mTORC1 Gene Expression in Male Wistar Rats with Type 2 Diabetes
Objective: Although type 2 diabetes is a multifactorial illness, one of the major risk factors is the prevalence of obesity.In this context, recent genetic studies on diabetics or pre-diabetics, have shown that some of the newly-known genes make the conditions for type 2 diabetes even in the absence of obesity. One of these genes is called mTORC1, which plays an important role in the synt...
متن کاملTHE EFFECT OF INTENSE PERIODIC EXERCISE AND CONSUMPTION OF BLACK GRAPE SEED EXTRACT ON BAX AND BCL-2 GENE EXPRESSION IN PANCREATIC TISSUE OF MALE RATS WITH TYPE 2 DIABETES
Background: Although some studies have studied the mechanism of action of beta cells in animal models and more or less in human populations, but so far the role of exercise therapy or exercise exercise HIIT with black grape supplementation on the expression of genes involved in pancreatic beta cells This study investigates the effect of black grape supplementation combined with intense intermit...
متن کاملSingle-nucleotide polymorphism of rs11061971 (+219 A>T) in adiponectin receptor 2 (AdipoR2) gene and its association with risk of type 2 diabetes among an Iranian population
Background and Objectives: Genetic modifications in the adiponectin receptor 2 (AdipoR2) gene can affect phenotypes associated with insulin resistance and diabetes. The purpose of this study was to evaluate the possible role of genetic modifications in the AdipoR2 gene, to determine the frequency of genotypes and polymorphism alleles of this gene at rs11061971 (+219 A>T), and to investigate its...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2012